Abstract
AbstractTropical reef communities contain spatial patterns at multiple scales, observable from microscope and satellite alike. Many of the smaller-scale patterns are generated physiologically (e.g., skeletal structures of corals at <1-m scale), while some of the larger patterns have been attributed to scale-dependent feedbacks (e.g., spur and groove reefs at 10-100-m scales). In describing the spatial patterning of reef benthic communities at landscape levels, we uncovered unique spatial patterning among living marine algae. Populations of the calcifying green alga Halimeda were observed to form a consistent polygonal pattern at a characteristic scale of 3-4 m. The pattern showed no clear evidence of having been formed through biologically created shifts in hydrodynamical conditions or related mechanisms. In considering the specifics of Halimeda growth patterns, a model of self-organization involving separation and patterned extension is proposed, a mechanism revealed in some geological pattern formation. This observation reinforces the diversity of pathways by which striking spatial patterns can occur in ecosystems.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have