Abstract

A recombination of active defect in very high lifetime Czochralski grown n-type silicon wafers, which can be thermally deactivated at 150 °C, is described. In addition, the existence of a recently measured defect, which is deactivated at 350 °C, is confirmed. Both defects are found to significantly degrade the lifetime of millisecond-range Czochralski-grown n-type silicon wafers: a material widely used for high-efficiency solar cells. The observed deactivation temperature suggests that it may be caused by vacancy-phosphorus pairs. The deactivation temperature of the second defect is consistent with the presence of vacancy-oxygen (V-O) pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.