Abstract

A comparative analysis of electron energy-loss spectroscopy (EELS) spectra for the 1D insulating cuprate Sr2CuO3 with transferred momentum q--> axially and radially to the chain axis allows one to elucidate the structure of the charge transfer gap in in-chain response. It is determined by the superposition of two types of excitations with different magnitudes of dispersion. The low-energy response with q--> radially to the chain direction, but yet within the plane of CuO4 plaquettes, exhibits also a dispersionless peak near 2 eV. The theoretical simulation of the EELS data using exact diagonalizations of an appropriate extended Hubbard Hamiltonian for relevant clusters requires the explicit consideration of low-lying oxygen 2p pi states within the CuO4 plaquette plane beyond the standard pd sigma extended Hubbard model widely used for cuprates with corner-shared CuO4 plaquettes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.