Abstract

Antibodies or some amino acids, namely, cysteine, methionine, histidine, and tryptophan, were previously reported to catalyse the conversion of singlet oxygen (1O2) to ozone (O3). The originally proposed mechanism for such biological ozone formation was that antibodies or amino acids catalyse the oxidation of water molecules by singlet oxygen to yield dihydrogen trioxide (HOOOH) as a precursor of ozone and hydrogen peroxide (H2O2). However, because HOOOH readily decomposes to form water and singlet oxygen rather than ozone and hydrogen peroxide, an alternative hypothesis has been proposed; ozone is formed due to the reaction of singlet oxygen with amino acids to form polyoxidic amino acid derivatives as ozone precursors. Evidence in support of the latter hypothesis is presented in this article, in that in the presence of singlet oxygen, methionine sulfoxide (RS(O)CH3), an oxidation product of methionine (RSCH3), was found to promote reactions that can best be attributed to the trioxidic anionic derivative RS+(OOO−)CH3or ozone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.