Abstract

The role of myosin subfragment-2 (myosin S-2) in muscle contraction was studied by using an in vitro motility assay system in which the ATP-dependent sliding between myosin-coated polystyrene beads and actin filament arrays (actin cables) of giant algal cells were recorded under constant external loads provided with a centrifuge microscope. With antibody to myosin S-2 below 0.3 mg/ml, the maximum "isometric" force generated by myosin molecules on the bead decreased markedly, but the unloaded bead-sliding velocity along actin cables did not change appreciably, indicating a decrease in the number of myosin molecules interacting with actin cables. The antibody at 0.3-1.5 mg/ml decreased not only the maximum isometric force, but also the unloaded bead-sliding velocity in a dose-dependent manner. With the antibody at 1.5-3 mg/ml, the beads eventually stopped moving to remain attached to actin cables. These beads could be readily detached from actin cables with very small centrifugal forces, indicating very weak actin-myosin linkages. The antibody had no effect on rigor actin-myosin linkages formed before the antibody application. These results are consistent with the view that myosin S-2 plays an essential role in muscle contraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.