Abstract

Radiogenic Sr isotopes (87Sr/86Sr) are robust for provenance identification in hydrology, affected mainly by the age of background lithologies and the degree of chemical weathering. However, there is limited knowledge concerning the fractionation mechanism of stable Sr isotopes (88Sr/86Sr) in rivers. In this study, river water was collected on a weekly to monthly basis throughout dry and wet seasons. Furthermore, to study the variations of radiogenic and stable Sr isotopes during intense weathering, a major flooding event (2000mm precipitation in three days, Typhoon Morakot), water was captured within a small drainage catchment system (161km2) along the Hou-ku River in southwestern Taiwan. For a better constraint on the end member compositions, bedload sediments, suspended particles, and several host rocks were sampled for a systematic investigation. The carbonate and silicate phases of these solids were chemically separated. Dissolved major elements indicate that the watersheds were predominated by silicate weathering. Stable Sr isotopes show no significant variation (δ88Sr=0.24–0.31‰) temporally and spatially with an average of 0.28‰. Additionally, all solids showed lower δ88Sr values than the river water while the host rocks had higher δ88Sr values (δ88Sr=0.20–0.26‰) than the residual weathering products (δ88Sr=0.08–0.22‰), indicating preferential leaching of heavy Sr into the hydrosphere and leaving light Sr in the residual solids. Results of laboratory acid leaching experiments reveal that dissolution of high δ88Sr value minerals occurred at an early stage of weathering. The variation of weathering intensity does not alter stable Sr isotopes in silicate weathering dominated river water, which contains higher stable Sr isotopes than the associated sediments. The silicatic sedimentary rocks preferentially released higher stable Sr isotopes into the hydrosphere during chemical weathering, thus leaving lower stable Sr isotopes in the residual solids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.