Abstract
The evolution of subterranean animals following multiple colonisation events from the surface has been well documented, but few studies have investigated the potential for species diversification within cavernicolous habitats. Isolated calcrete (carbonate) aquifers in central Western Australia have been shown to contain diverse assemblages of aquatic subterranean invertebrate species (stygofauna) and to offer a unique model system for exploring the mechanisms of speciation in subterranean ecosystems. In this paper, we investigated the hypothesis that microallopatric speciation processes (fragmentation and isolation by distance (IBD)) occur within calcretes using a comparative phylogeographic study of three stygobiontic diving beetle species, one amphipod species and a lineage of isopods. Specimens were sequenced for the mitochondrial cytochrome c oxidase 1 gene from three main sites: Quandong Well, Shady Well (SW) and Mt. Windarra (MW), spanning a 15 km region of the Laverton Downs Calcrete. Phylogenetic and haplotype network analyses revealed that each species possessed a single divergent clade of haplotypes that were present only at the southern MW site, despite the existence of other haplotypes at MW that were shared with SW. IBD between MW and SW was evident, but the common phylogeographic pattern most likely resulted from fragmentation, possibly by a salt lake adjacent to MW. These findings suggest that microallopatric speciation within calcretes may be a significant diversifying force, although the proportion of stygofauna species that may have resulted from in situ speciation in this system remains to be determined.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have