Abstract
BackgroundN,N-Diethyl-3-methylbenzamide (deet) remains the gold standard for insect repellents. About 200 million people use it every year and over 8 billion doses have been applied over the past 50 years. Despite the widespread and increased interest in the use of deet in public health programmes, controversies remain concerning both the identification of its target sites at the olfactory system and its mechanism of toxicity in insects, mammals and humans. Here, we investigated the molecular target site for deet and the consequences of its interactions with carbamate insecticides on the cholinergic system.ResultsBy using toxicological, biochemical and electrophysiological techniques, we show that deet is not simply a behaviour-modifying chemical but that it also inhibits cholinesterase activity, in both insect and mammalian neuronal preparations. Deet is commonly used in combination with insecticides and we show that deet has the capacity to strengthen the toxicity of carbamates, a class of insecticides known to block acetylcholinesterase.ConclusionThese findings question the safety of deet, particularly in combination with other chemicals, and they highlight the importance of a multidisciplinary approach to the development of safer insect repellents for use in public health.
Highlights
N,N-Diethyl-3-methylbenzamide remains the gold standard for insect repellents
We have identified a molecular target site for deet in both insect and mammal neuronal preparations, and have investigated the consequences of its interactions with carbamate insecticides on the cholinergic system
Insecticidal effect of deet on insects To elucidate repellent toxicity in insects, we first assessed the sensitivity of the dengue vector Aedes aegypti L. (Diptera:Culicidae) to deet -treated filter papers using World Health Organization (WHO) bioassays [19]
Summary
Biochemical and electrophysiological techniques, we show that deet is not a behaviour-modifying chemical but that it inhibits cholinesterase activity, in both insect and mammalian neuronal preparations. Deet is commonly used in combination with insecticides and we show that deet has the capacity to strengthen the toxicity of carbamates, a class of insecticides known to block acetylcholinesterase
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have