Abstract

Zero-field muon spin rotation and magnetization measurements were performed in La2Cu{1-x}MxO4, for 0<x< 0.12, where Cu2+ is replaced either by M=Zn2+ or by M=Mg2+ spinless impurity. It is shown that while the doping dependence of the sublattice magnetization (M(x)) is nearly the same for both compounds, the N\'eel temperature (T_N(x)) decreases unambiguously more rapidly in the Zn-doped compound. This difference, not taken into account within a simple dilution model, is associated with the frustration induced by the Zn2+ impurity onto the Cu2+ antiferromagnetic lattice. In fact, from T_N(x) and M(x) the spin stiffness is derived and found to be reduced by Zn doping more significantly than expected within a dilution model. The effect of the structural modifications induced by doping on the exchange coupling is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.