Abstract

The so-called 8.2 ka event represents one of the most prominent cold climate anomalies during the Holocene warm period. Accordingly, several studies have addressed its trigger mechanisms, absolute dating and regional characteristics so far. However, knowledge about subsequent climate recovery is still limited although this might be essential for the understanding of rapid climatic changes. Here we present a new sub-decadally resolved and precisely dated oxygen isotope (δ18O) record for the interval between 7.7 and 8.7 ka BP (103 calendar years before AD 1950), derived from the calcareous valves of benthic ostracods preserved in the varved lake sediments of pre-Alpine Mondsee (Austria). Besides a clear reflection of the 8.2 ka event, showing a good agreement in timing, duration and magnitude with other regional stable isotope records, the high-resolution Mondsee lake sediment record provides evidence for a 75-year-long interval of higher-than-average δ18O values directly after the 8.2 ka event, possibly reflecting increased air temperatures in Central Europe. This observation is consistent with evidence from other proxy records in the North Atlantic realm, thus most probably reflecting a hemispheric-scale climate signal rather than a local phenomenon. As a possible trigger we suggest an enhanced resumption of the Atlantic meridional overturning circulation (AMOC), supporting assumptions from climate model simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.