Abstract

Despite the synthesis of a boryl anion by Yamashita et al. in 2006, compounds that show boron-centered nucleophilicity are still rare and sought-after synthetic goals. A number of such boryl anions have since been prepared, two of which were reported to react with methyl iodide in apparent nucleophilic substitution reactions. One of these, a borolyl anion based on the borole framework, has now been found to display single-electron-transfer (SET) reactivity in its reaction with triorganotetrel halides, which was confirmed by the isolation of the first neutral borole-based radical. The radical was characterized by elemental analysis, single-crystal X-ray crystallography, and EPR spectroscopy, and has implications for the understanding of boron-based nucleophilic behavior and the emergent role of boron radicals in synthesis. This radical reactivity was also exploited in the synthesis of compounds with rare B-Sn and B-Pb bonds, the latter of which was the first isolated and structurally characterized compound with a "noncluster" B-Pb bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.