Abstract

This paper reports on the mechanism of substrate activation by the enzyme 4-chlorobenzoyl coenzyme A dehalogenase. This enzyme catalyzes the hydrolytic dehalogenation of 4-chlorobenzoyl coenzyme A (4-CBA-CoA) to form 4-hydroxybenzoyl coenzyme A (4-HBA-CoA). The mechanism of this reaction is known to involve attack of an active site carboxylate (Asp or Glu side chain) at C(4) of the substrate benzoyl ring to form a Meisenheimer complex. Loss of chloride ion from this intermediate results in the formation of an arylated enzyme intermediate. The arylated enzyme is hydrolyzed to free enzyme plus 4-HBA-CoA by the addition of water at the acyl carbon [Yang, G., Liang, P.-H., & Dunaway-Mariano, D. (1994) Biochemistry 33, 8527]. The present studies have focused on the activation of the 4-CBA-CoA for nucleophilic attack by the active site carboxylate group. UV-visible, 13C-NMR, and Raman spectroscopic techniques were used to monitor changes in the distribution of the pi electrons of the benzoyl moiety of benzoyl-CoA adducts [substituted at C(4) with methyl (4-MeBA-CoA), methoxy (4-MeOBA-CoA), or hydroxyl (4-HBA-CoA) groups or at C(2) or C(3) with a hydroxyl group (2-HBA-CoA and 3-HBA-CoA)] resulting from the binding of these ligands to the dehalogenase active site. The UV-visible spectra measured for 4-HBA-CoA in aqueous buffer at pH 7.5 and in the dehalogenase active site revealed that a large red shift (from 292 to 373 nm) in the lambda max of the benzoyl moiety occurs upon binding.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.