Abstract
The results of field mapping and carbon isotope and phase equilibria studies suggest that two different, locally controlled fluid regimes existed during at least the early phases of high-grade metamorphism in the north Cauchon Lake region, Pikwitonei granulite domain, Manitoba, Canada. During the prograde stages of high-grade "anticlockwise" regional metamorphism, rocks already metamorphosed to at least sillimanite grade were thermally metamorphosed at temperatures near 900 °C by the intrusion of a charnockitic magma. It is likely that this magma released an oxidizing, CO2-bearing, probably CO2-rich fluid phase while the region was still at relatively shallow depths. Fluid migration was channelized along the intrusive contact, and local fluid buffering characterized many of the country rocks. The light carbon isotope values of graphites (gr) and CO2 in cordierites (crd) in pelitic lithologies (δ13Cgr = −41.8 to −30.4; δ13Ccrd = −31.8 to −34.9), and the low oxygen fugacities in many samples rule out infiltration of these units by large amounts of an externally derived CO2-rich fluid phase. Texturally early CO2-rich fluid inclusions occur in the cores of garnets in a variety of rock types along the intrusive contact. These fluid inclusions were probably trapped during early garnet growth at high temperatures and relatively low pressures, and appear to have undergone limited or no subsequent reequilibration. They do not appear to provide direct information about the highest regional metamorphic temperature and pressure conditions to have affected the region (750 °C and 7 kbar (1 kbar = 100 MPa)) but may instead retain evidence of the prograde metamorphic path. These studies demonstrate the importance of local controls on the sources, compositions, timing, and transport of metamorphic fluids in the north Cauchon Lake region.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have