Abstract
The mechanism and kinetics of RNA polymerase II transcription and histone acetylation were studied by chromatin immunoprecipitation in yeast. Our results indicate that a significant fraction of polymerases starting transcription never make it to the end of a long GAL-VPS13 fusion gene. Surprisingly, induction of GAL genes results in substantial loss of histone-DNA contacts not only in the promoter but also in the coding region. The loss of nucleosomes is dependent on active transcript elongation, but apparently occurs independently of histone acetylation. In contrast, histones in genes previously shown to require the histone acetyltransferases GCN5 and ELP3 for normal transcription do not lose DNA contacts, but do become acetylated as a result of transcription. Together, these results suggest the existence of at least two distinct mechanisms to achieve efficient transcript elongation through chromatin: a pathway based on loss of histone-DNA contacts, and a histone acetylation-dependent mechanism correlating with little or no net loss of nucleosomes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.