Abstract
In the spin ladder compound BiCu(2)PO(6), there exists a decisive dynamics of spin excitations that we classify and characterize using inelastic light scattering. We observe an interladder singlet bound mode at 24 cm(-1) and two intraladder bound states at 62 and 108 cm(-1) in the leg (bb) and the rung (cc) polarization as well as a broad triplon continuum extending from 36 cm(-1) to 700 cm(-1). Though isolated spin ladder physics can roughly account for the observed excitations at high energies, frustration and interladder interactions need to be considered to fully describe the spectral distribution and scattering selection rules at low and intermediate energies. In addition, we attribute the rich spectrum of singlet bound modes to a melting of a dimer crystal. Our study provides evidence for a Z(2) quantum phase transition from a dimer to a resonating valence bond state driven by singlet fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.