Abstract

We have determined the relative concentrations of ribosomes accumulated under different growth conditions for a number of translational mutants as well as for some natural isolates of Escherichia coli. The mutants are a tRNA modification mutant (miaA), a streptomycin resistant (SmR) and a streptomycin pseudodependent (SmP) mutant as well as two ribosome ambiguity (ram) mutants. The natural isolates used in this study are known to function with submaximal ribosome kinetics. The data show that for all the ribosome mutants the concentration of ribosomes relative to that in wild type bacteria increases when the growth rate decreases. A small increase is also seen in the natural isolates. In contrast, the miaA mutant shows no increase in ribosome concentration under the same slow growth conditions. The results suggest that bacteria with kinetically impaired ribosomes can to some extent increase the number of ribosomes accumulated under poor growth conditions in order to compensate for their slower function. We use this observation to explain in part how bacteria growing in natural environments can escape the strong selection for maximized growth rates and for optimized ribosomes that are characteristics of laboratory strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.