Abstract

The cellular mechanisms that regulate the topographic arrangement of myelin internodes along axons remain largely uncharacterized. Recent clonal analysis of oligodendrocyte morphologies in the mouse optic nerve revealed that adjacent oligodendrocytes frequently formed adjacent internodes on one or more axons in common, whereas oligodendrocytes in the optic nerve were never observed to myelinate the same axon more than once. By modelling the process of axonal selection at the single cell level, we demonstrate that internode length and primary process length constrain the capacity of oligodendrocytes to myelinate the same axon more than once. On the other hand, probabilistic analysis reveals that the observed juxtaposition of myelin internodes among common sets of axons by adjacent oligodendrocytes is highly unlikely to occur by chance. Our analysis may reveal a hitherto unknown level of communication between adjacent oligodendrocytes in the selection of axons for myelination. Together, our analyses provide novel insights into the mechanisms that define the spatial organization of myelin internodes within white matter at the single cell level.

Highlights

  • Oligodendrocytes (OLs) are responsible for myelinating the axons of subsets of neurons in the central nervous system

  • It is unknown whether local oligodendrocyte progenitor cells (OPCs) or pre-myelinating OLs interpret axon-derived pro-myelinating cues in a cell autonomous or cooperative manner to effect the myelination of proximal axons

  • The first concerns an OL from a mouse at postnatal day 10 (P10) which produced the least number of internodes, four, of all the mice examined by Dumas et al [7]

Read more

Summary

Introduction

Oligodendrocytes (OLs) are responsible for myelinating the axons of subsets of neurons in the central nervous system. Recent studies have identified a role for neuronal activity in defining the set of axons to be myelinated [1,2,3,4,5,6] It is unknown whether local oligodendrocyte progenitor cells (OPCs) or pre-myelinating OLs interpret axon-derived pro-myelinating cues in a cell autonomous or cooperative manner to effect the myelination of proximal axons. To investigate this question, we examined two sets of quantitative data published in 2015 by Dumas et al [7], who analyzed the topographic organization of myelin internodes from

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.