Abstract

Axon function in the CNS has been reported to fail rapidly during anoxia, implying that there is no anaerobic capacity. This phenomenon was reassessed in rodent white matter using mouse or rat optic nerve. Axon function was semiquantitatively measured as area under the compound action potential. Mouse optic nerves exposed to anoxia (30-180 minutes) or cyanide (30-60 minutes) at 37 degrees C exhibited significant persistent function that was abolished by removing glucose. Reduction in compound action potential area increased with anoxia duration reaching a maximum of about 70% after 90 min. Rat optic nerves exposed to anoxia, in contrast to mouse optic nerves, showed rapid and complete loss of function. When artificial CSF glucose was increased from 10 to 30 mmol/L, rat optic nerves responded to anoxia in a similar manner to mouse optic nerves in 10-mmol/L glucose. The authors conclude that white matter is resistant to anoxia with a subset of axons able to subsist exclusively on anaerobically derived energy. Because the rat optic nerve is about twice the diameter of the mouse optic nerve, glucose diffusion into the rat optic nerve was inadequate during anoxia when artificial CSF glucose was 10 mmol/L but became adequate when artificial CSF glucose was 30 mmol/L. These observations have implications for white matter energy metabolism and susceptibility to injury during focal ischemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call