Abstract

Isoprene, an aliphatic unsaturated hydrocarbon (C5H8), is a key volatile released to the atmosphere by broad-leaf forest vegetation. Data obtained from field and laboratory experiments clearly prove that isoprene is a precursor of secondary organic aerosol (SOA). In this work evidence is provided that in-cloud transformations of isoprene coupled with S(IV)-autoxidation is a potentially important route for aqueous SOA through the formation of polar organosulfates and organosulfites with MWs of 182, 180 and 166, 164, respectively. Recently, MW 182 organosulfates have been observed in substantial abundance in ambient fine aerosol. Results from comprehensive LC/(−)ESI-QTRAP-MS/MS analysis revealed oxygenated polar species with a C5 skeleton bearing – OSO3H (MW 182, 180) and –OSO2H (MW 166, 164) moieties. The structures of these products were elucidated by detailed interpretation of negative-ion electrospray-ionization mass spectra, and additionally, in case of the MW 182 organosulfates, by comparison of chromatographic and mass spectrometric profiles with synthesized standards. The formation of C5 organosulfur products is explained through sulfate/sulfite radical-induced oxidation in the aqueous particle phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.