Abstract
A general object recognition ability predicts performance across a variety of high-level visual tests, categories, and performance in haptic recognition. Does this ability extend to auditory recognition? Vision and haptics tap into similar representations of shape and texture. In contrast, features of auditory perception like pitch, timbre, or loudness do not readily translate into shape percepts related to edges, surfaces, or spatial arrangement of parts. We find that an auditory object recognition ability correlates highly with a visual object recognition ability after controlling for general intelligence, perceptual speed, low-level visual ability, and memory ability. Auditory object recognition was a stronger predictor of visual object recognition than all control measures across two experiments, even though those control variables were also tested visually. These results point towards a single high-level ability used in both vision and audition. Much work highlights how the integration of visual and auditory information is important in specific domains (e.g., speech, music), with evidence for some overlap of visual and auditory neural representations. Our results are the first to reveal a domain-general ability, o, that predicts object recognition performance in both visual and auditory tests. Because o is domain-general, it reveals mechanisms that apply across a wide range of situations, independent of experience and knowledge. As o is distinct from general intelligence, it is well positioned to potentially add predictive validity when explaining individual differences in a variety of tasks, above and beyond measures of common cognitive abilities like general intelligence and working memory.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have