Abstract

We investigated the atomic configuration and the electronic structure of a BaBiO3 (BBO) thin film and its (001) surface. It was theoretically predicted that two-dimensional electron gases would be formed when the film is BiO2-terminated. We deduced depth-profile information for a BBO thin film using angle-dependent X-ray photoemission spectroscopy. Analysis of the spectral weights of the Ba 3d and Bi 4f core levels confirmed that the BBO film should have a BiO2-terminated topmost layer. We used in-situ angle-resolved photoemission spectroscopy to experimentally determine the electronic structure of a BBO thin film and found no metallic surface state. We distinguished surface states from bulk states by evaporating potassium atoms in-situ on the surface. A surface state near the bottom of the topmost bulk valence band, which was predicted by the DFT calculations, was identified. However, other surface states well separated from the bulk states were not observed. Our results provided evidence that descriptions of the BBO electronic structure require more detailed and elaborate approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.