Abstract

ABSTRACTWe have used synchrotron X-ray powder diffraction (SXRPD) to investigate the structural behavior of cesium dihydrogen phosphate upon heating. Temperature-resolved data collected at ambient-pressure demonstrate that a transition from the room-temperature monoclinic phase (P21/m; a=7.90Å, b=6.39Å, c=4.87Å, and β=107.64°) to a high-temperature cubic phase (Pm3m; a=4.96Å) occurs at T=237°C. The high-temperature phase is not stable under ambient-pressure conditions, even in the absence of further heating. On the other hand, SXRPD measurements carried out under high-pressure (∼1GPa) evidence a transition from monoclinic to a stable cubic phase (Pm3m, a=4.88Å) at a temperature within the 255°C-275°C range. A 1000-fold increase in the proton conductivity (indicating the transition to the superprotonic phase) was previously observed under the same non-ambient conditions. Therefore, our results represent strong evidence that the superprotonic behavior in cesium dihydrogen phosphate is associated with a monoclinic-to-cubic polymorphic structural transition and not with chemical modifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call