Abstract

5-Hydroxytryptamine 2A (5-HT2A) receptors are essential for the actions of serotonin (5-hydroxytryptamine (5-HT)) on physiological processes as diverse as vascular smooth muscle contraction, platelet aggregation, perception, and emotion. In this study, we investigated the molecular mechanism(s) by which 5-HT activates 5-HT2A receptors using a combination of approaches including site-directed mutagenesis, molecular modeling, and pharmacological analysis using the sensitive, cell-based functional assay R-SAT. Alanine-scanning mutagenesis of residues close to the intracellular end of H6 of the 5-HT2A receptor implicated glutamate Glu-318(6.30) in receptor activation, as also predicted by a newly constructed molecular model of the 5-HT2A receptor, which was based on the x-ray structure of bovine rhodopsin. Close examination of the molecular model suggested that Glu-318(6.30) could form a strong ionic interaction with Arg-173(3.50) of the highly conserved "(D/E)RY motif" located at the interface between the third transmembrane segment and the second intracellular loop (i2). A direct prediction of this hypothesis, that disrupting this ionic interaction by an E318(6.30)R mutation would lead to a highly constitutively active receptor with enhanced affinity for agonist, was confirmed using R-SAT. Taken together, these results predict that the disruption of a strong ionic interaction between transmembrane helices 3 and 6 of 5-HT2A receptors is essential for agonist-induced receptor activation and, as recently predicted by ourselves (B. L. Roth and D. A. Shapiro (2001) Expert Opin. Ther. Targets 5, 685-695) and others, that this may represent a general mechanism of activation for many, but not all, G-protein-coupled receptors.

Highlights

  • 5-Hydroxytryptamine 2A (5-HT2A) receptors are essential for the actions of serotonin (5-hydroxytryptamine (5-HT)) on physiological processes as diverse as vascular smooth muscle contraction, platelet aggregation, perception, and emotion

  • We investigated the molecular mechanism(s) by which 5-HT activates 5-HT2A receptors using a combination of approaches including site-directed mutagenesis, molecular modeling, and pharmacological analysis using the sensitive, cell-based functional assay R-SAT

  • A direct prediction of this hypothesis, that disrupting this ionic interaction by an E318(6.30)R mutation would lead to a highly constitutively active receptor with enhanced affinity for agonist, was confirmed using R-SAT. These results predict that the disruption of a strong ionic interaction between transmembrane helices 3 and 6 of 5-HT2A receptors is essential for agonist-induced receptor activation and, as recently predicted by ourselves

Read more

Summary

Introduction

5-Hydroxytryptamine 2A (5-HT2A) receptors are essential for the actions of serotonin (5-hydroxytryptamine (5-HT)) on physiological processes as diverse as vascular smooth muscle contraction, platelet aggregation, perception, and emotion. More recent studies have predicted that agonist-induced activation of rhodopsin and ␤2adrenergic receptors [16, 17] and muscarinic m5 receptors [18, 19] occurs via agonist-induced rotations of H6 and H3 (“H3-H6 rotation model”) This model was quite recently modified based on examination of the crystal structure of rhodopsin [20] and extended to include disruption of a strong ionic interaction between residues in H6 and H3 (“H6-H3 interaction model”) [21, 41]. We have predicted [41] that agonist binding to

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.