Abstract

1. Exposure of trout red blood cells to beta-adrenergic agonist isoprenaline activates a cAMP-dependent Na(+)-H+ antiport, the movements of protons being compensated by a Cl(-)-OH- (or HCO3-) exchange mediated by band 3 protein. The absorption of water osmotically linked to sodium and chloride induces cell swelling. 2. In the presence of acetazolamide, anionic exchange is inhibited and activation of cationic exchange resulted in the first 2 min in a strong external acidification and a large internal alkalinization leading to a reversal of the transmembrane pH gradient. Then, for at least 1 h and despite the inhibition of Cl- entry, a net Na+ uptake occurred which was balanced by an equivalent K+ loss, with the result that cell volume and pH gradient remained unchanged. 3. In such conditions, the inactivation of the Na(+)-H+ exchanger by a beta-antagonist, propranolol, blocked Na+ entry while K+ continued to be lost. This volume-independent K+ efflux, which is thus independent of the Na(+)-H+ exchanger, was not accompanied by a Cl- efflux but was associated with large internal and external pH changes consistent with K(+)-H+ exchange. 4. The K+ loss and the related pH changes are inhibited by compounds which are known to inhibit the K(+)-anion co-transporter in trout red cells, i.e. 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (Dids) and niflumic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.