Abstract

The gap-junctional proteins connexin43 and connexin42 have been shown to be expressed in the developing and mature avian heart, but their respective spatiotemporal distributions are unknown. In the present study, we have immunolocalized connexin42 in the conduction tissues of the adult avian heart (nonbranching bundle, bundle branches, and Purkinje fibers) and vascular endothelial cells. Connexin43 immunolabeling was confined to vascular smooth muscle. A novel microwave-based method was used to label connexin42 and connexin43 in the same tissue section. Neither connexin42 nor connexin43 was immunolocalized in working myocardium, atrioventricular node, and atrioventricular ring tissue of the bird heart. Although connexin42 first appeared in periarterial conduction myocytes and vascular endothelium at 9-10 embryonic days, the central conduction tissues, including the nonbranching bundle and proximal branches, remained immunonegative for connexin42 up until hatching (approximately 20 embryonic days). During the early postnatal period (1-14 days), connexin42 immunolabeling progressively spread up the bundle branches toward the nonbranching bundle. Connexin42 appeared uniformly distributed along the left bundle branch by 14 postnatal days. The distribution and spread of connexin42 immunoreactivity suggest that the emergence of specialized junctional contacts along ventricular fascicles occurs relatively late in heart development and coincides with the emergence of the chick from incubation within the egg.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.