Abstract

We studied the morphology of the atrioventricular conduction system (AVCS) and Purkinje fibers of the yak. Light and transmission electron microscopy were used to study the histological features of AVCS. The distributional characteristics of the His-bundle, the left bundle branch (LBB), right bundle branch (RBB), and Purkinje fiber network of yak hearts were examined using gross dissection, ink injection, and ABS casting. The results showed that the atrioventricular node (AVN) of yak located in the right side of interatrial septum and had a flattened ovoid shape. The AVN of yak is composed of the slender, interweaving cells formed almost entirely of the transitional cells (T-cells). The His-bundle extended from the AVN, and split into left LBB and RBB at the crest of the interventricular septum. The LBB descended along the left side of interventricular septum. At approximately the upper 1/3 of the interventricular septum, the LBB typically divided into three branches. The RBB ran under the endocardium of the right side of interventricular septum, and extended to the base of septal papillary muscle, passed into the moderator band, crossed the right ventricular cavity to reach the base of anterior papillary muscle, and divided into four fascicles under the subendocardial layer. The Purkinje fibers in the ventricle formed a complex spatial network. The distributional and cellular component characteristics of the AVCS and Purkinje fibers ensured normal cardiac function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.