Abstract

Horizontal transfer of mobile genetic elements within Staphylococci is of high biomedical significance as such elements are frequently responsible for virulence and toxic effects. Staphylococcus-encoded repressor proteins regulate the replication of these mobile genetic elements that are located within the so-called pathogenicity islands. Here, we report structural and functional characterization of one such repressor protein, namely the Stl protein encoded by the pathogenicity island SaPIbov1. We create a 3D structural model and based on this prediction, we investigate the different functionalities of truncated and point mutant constructs. Results suggest that a helix-turn-helix motif governs the interaction of the Stl protein with its cognate DNA site: point mutations within this motif drastically decrease DNA-binding ability, whereas the interaction with the Stl-binding partner protein dUTPase is unperturbed by these point mutations. The 3D model also suggested the potential independent folding of a carboxy-terminal domain. This suggestion was fully verified by independent experiments revealing that the carboxy-terminal domain does not bind to DNA but is still capable of binding to and inhibiting dUTPase. A general model is proposed, which suggests that among the several structurally different repressor superfamilies Stl-like Staphylococcal repressor proteins belong to the helix-turn-helix transcription factor group and the HTH motif is suggested to reside within N-terminal segment.

Highlights

  • Phage mediated mobilization of pathogenicity islands, i.e. genetic elements encoding virulence factors and toxins in Staphylococcus aureus (SaPI) has been an intensively studied field in recent years [1]

  • Seven templates were selected by the program (PDB IDs: 1E3O, 4YV9, 2GRM, 4RYK, 2QFC, 2AXZ, 2EBY) to model Stl protein based on heuristics to maximize confidence, percentage identity and alignment coverage [38]

  • The repressor protein has a mostly α-helical (74%) secondary structure it is likely to belong to the class of “all-α” proteins (SCOP ID 46456) that includes various protein superfamilies

Read more

Summary

Introduction

Phage mediated mobilization of pathogenicity islands, i.e. genetic elements encoding virulence factors and toxins in Staphylococcus aureus (SaPI) has been an intensively studied field in recent years [1]. Based on the 3D model verified by CD results, we produced truncated and point mutants and studied their function in DNA and dUTPase binding. Both the Phyre2 and the Modeller 3D structures agreed in that the protein is mostly α-helical and contains an N-terminal HTH motif (S1 Fig).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.