Abstract

BackgroundUsing 3D generic models to statistically analyze trends in biological structure changes is an important tool in morphometrics research. Therefore, 3D generic models built for a range of populations are in high demand. However, due to the complexity of biological structures and the limited views of them that medical images can offer, it is still an exceptionally difficult task to quickly and accurately create 3D generic models (a model is a 3D graphical representation of a biological structure) based on medical image stacks (a stack is an ordered collection of 2D images). We show that the creation of a generic model that captures spatial information exploitable in statistical analyses is facilitated by coupling our generalized segmentation method to existing automatic image registration algorithms.MethodsThe method of creating generic 3D models consists of the following processing steps: (i) scanning subjects to obtain image stacks; (ii) creating individual 3D models from the stacks; (iii) interactively extracting sub-volume by cutting each model to generate the sub-model of interest; (iv) creating image stacks that contain only the information pertaining to the sub-models; (v) iteratively registering the corresponding new 2D image stacks; (vi) averaging the newly created sub-models based on intensity to produce the generic model from all the individual sub-models.ResultsAfter several registration procedures are applied to the image stacks, we can create averaged image stacks with sharp boundaries. The averaged 3D model created from those image stacks is very close to the average representation of the population. The image registration time varies depending on the image size and the desired accuracy of the registration. Both volumetric data and surface model for the generic 3D model are created at the final step.ConclusionsOur method is very flexible and easy to use such that anyone can use image stacks to create models and retrieve a sub-region from it at their ease. Java-based implementation allows our method to be used on various visualization systems including personal computers, workstations, computers equipped with stereo displays, and even virtual reality rooms such as the CAVE Automated Virtual Environment. The technique allows biologists to build generic 3D models of their interest quickly and accurately.

Highlights

  • Using 3D generic models to statistically analyze trends in biological structure changes is an important tool in morphometrics research [1,2,4,5,6,7,8,9,10]

  • Overview of the method The method pipeline contains the following major steps: (i) scanning subjects to obtain image stacks; (ii) creating individual 3D models from the stacks; (iii) cutting each model to generate a sub-model of the user’s interest; (iv) making image stacks that contain only the information pertaining to the sub-models; (v) iteratively registering the corresponding new 2D image stacks from the previous step; (vi) averaging the newly created sub-models based on intensity to produce the generic model from all the individual sub-models

  • All the algorithms are implemented using Java and C++ based on functionalities from open source toolkits VTK (Visualization Toolkit [17]), ITK (Insight Segmentation and Registration Toolkit [13]) and ImageJ [18]. Both volumetric data and surface model for the generic 3D model are created at the final step

Read more

Summary

Introduction

Using 3D generic models to statistically analyze trends in biological structure changes is an important tool in morphometrics research. Using 3D generic models to statistically analyze trends in biological structure changes is an important tool in morphometrics research [1,2,4,5,6,7,8,9,10]. A technique for creating high throughput 3D generic models is needed to collect and manage large numbers of subjects quickly and efficiently. Such a technique will enable researchers to discover a wide range of traits to their interest in both natural and clinical settings. In medical and biological studies, 3D generic models built for a range of populations are in high demand

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.