Abstract

PurposeThe aim of our cadaveric study was to compare the mechanical properties of different parts of the quadriceps’ tendon in a load to failure analysis as compared to three other, and most common types of grafts that are used to perform ligament’s reconstruction.MethodsTen fresh-frozen cadavers (5 women, 5 men) were selected from our anatomical department. Mean age at death was 64 years (48–87 years). Tendons were harvested to prepare (1) different quadriceps tendon’s specimens: lateral portion (QTlat), medial portion superficial layer (QTMsup) and deep layer (QTMdeep) and central portion superficial (QTCsup) and deep layers (QTCdeep) (2) Patellar Tendon (PT), (3) Gracilis+Semi-Tendinosus specimens (GST). Specimens were stored at − 40 °C in a freezing solution. Specimens were securely attached to a dedicated loading platform, measurements were done using a validated software. Load to failure testing was then carried out. Young’s Elastic moduli, ultimate Stress (MPa) and Deformation (%) were analysed.ResultsThe elastic moduli of the PT was significantly higher than all other grafts, all medial and central QT layers (superficial and deep) were significantly higher than its lateral part (QTlat). In terms of Ultimate Stress, all grafts were significantly greater than QTlat, PT and GST were significantly superior to QT central portions and to ITB but there did not differ with the medial portion of QT. ITB ultimate stress values were significantly higher than QTlat. The ultimate deformations of all grafts were similar.ConclusionsThis study provides reference values in in order to characterize different parts of the QT that presents anatomically and Mechanically with complex characteristics. Every Layer of Quadriceps Tendon’s Central and Medial Portion Offered Similar Mechanical Properties than Two Strand Hamstrings or Ilio-Tibial Band.

Highlights

  • The majority of the tendon autografts demonstrate themselves to be safe and clinically efficient for knee ligament reconstruction1

  • Understanding the mechanical properties and the intrinsic behavior is a necessary adjunct to help guiding graft choice. These properties are independent of the size, volume or the influence of their attachment sites Whilst, the mechanical properties of the patellar tendon are well established within the literature [2,3,4, 12, 14, 25, 30, 33], there are relatively fewer studies on the mechanical properties of the hamstrings [1, 4, 12, 25], ITB [4, 11, 25, 28], and even less so on the quadriceps tendon [22, 25, 30, 34]

  • The elastic modulus of the Patellar Tendon (PT) was significantly higher than all other grafts (176 ± 119 MPa)

Read more

Summary

Introduction

The majority of the tendon autografts demonstrate themselves to be safe and clinically efficient for knee ligament reconstruction1 Their use is often based on a combination of factors including; their structural properties, size, donor site morbidity, graft availability, patients’ activity level, perceived functional outcome, and the surgeons preference [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]. Properties of an intact quadriceps grafts have been already quantified [22, 30, 33, 34] and recently the use of coronal and sagittal plane splitting for a double-bundle ACL reconstruction has been shown to result in similar tensile properties between the graft halves regardless of the splitting plane [23]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call