Abstract

Time varying formation control problem for a group of quadrotor unmanned aerial vehicles (UAVs) under Markovian switching topologies is investigated through a modified dynamic event-triggered control protocol. The formation shape is specified by a time varying vector, which prescribes the relative positions and bearings among the whole agents. Instead of the general stochastic topology, the graph is governed by a set of Markov chains to the edges, which can recover the traditional Markovian switching topologies in line with the practical communication network. The stability proof for the state space origin of the overall closed-loop system is derived from the singular perturbation method and Lyapunov stability theory. An event-triggered formation control protocol in terms of a dynamically varying threshold parameter is delicately carried out, while acquiring satisfactory resource efficiency, and Zeno behavior of triggering time sequences is excluded. Finally, simulations on six quadrotor UAVs are given to verify the effectiveness of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.