Abstract
This novel is concerned with the event-triggering robust fusion estimation problem for multi-rate systems (MRSs) subject to stochastic nonlinearities (SNs) and censored observations (COs). The considered multi-rate system includes several sensor nodes, and each sensor is with different sampling rate. To reflect the dead-zone-like censoring phenomenon, a Tobit-1 regression model with prescribed left-censoring threshold is introduced, and the stochastic nonlinearities characterized by statistical means are considered in the MRSs. In order to save the limited resource, the event-triggering mechanism (ETM) has been introduced to determine whether the specified sensor node should transmit the information to the corresponding local filter. For the addressed MRSs, we aim to design a local Tobit Kalman filtering (TKF) algorithm for each sensor node firstly in the sense of the upper bound on each local filtering error covariance being minimal. Then, such a minimized upper bound is derived by designing the filter gain properly at each iteration. In the sequel, the fusion centre manipulates the local estimates by the CI scheme. Moreover, we discuss the issue of consistency for the proposed multi-rate fusion estimation (MRFE) approach. At last, experimental simulation are exploited to demonstrate the validation of the designed MRFE algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.