Abstract
This paper investigates the stabilization of Networked Control Systems (NCS) with mismatched disturbances through a novel Event-Triggered Control (ETC), composed of a predictor-feedback scheme and a gain-scheduled Extended State Observer (ESO). The key idea of the proposed control strategy is threefold: (i) to reduce resource usage in the NCS (bandwidth, energy) while maintaining a satisfactory control performance; (ii) to counteract the main negative effects of NCS: time-varying delays, packet dropouts, packet disorder, and (iii) to reject the steady-state error in the controlled output due to mismatched disturbances. Moreover, we address the co-design of the controller/observer gains, together with the event-triggered parameters, by means of Linear Matrix Inequalities (LMI) and Cone Complementarity Linearization (CCL) approaches. Finally, we illustrate the effectiveness of the proposed control synthesis by simulation and experimental results in a Unmanned Aerial Vehicle (UAV) based test-bed platform.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have