Abstract

This paper is concerned with H∞ controller design for a class of discrete-time nonlinear singular system which is controlled over a communication network. The network-induced delay is considered, and its distribution characteristic is described by a Bernoulli stochastic variable. A novel event-triggered control scheme is proposed in order to save the limited network communication bandwidth. Based on the Lyapunov–Kravoskii stability theory, a delay-distribution-dependent criterion is derived which guarantees the closed-loop networked discrete-time nonlinear singular system is regular, causal, and stable with a certain H∞ performance index. A co-design method for the H∞ controller and the event-triggered scheme is presented by using the singular value decomposition technology. An numerical example is given to illustrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.