Abstract
Event-triggered approach to networked control systems is used to reduce the workload of the communication network. For the static output-feedback continuous event-trigger may generate an infinite number of sampling instants in finite time (Zeno phenomenon) what makes it inapplicable to the real-world systems. Periodic event-trigger avoids this behavior but does not use all the available information. In the present paper we aim to exploit the advantage of the continuous-time measurements and guarantee a positive lower bound on the inter-event times by introducing a switching approach for finding a waiting time in the event-triggered mechanism. Namely, our idea is to present the closed-loop system as a switching between the system under periodic sampling and the one under continuous event-trigger and take the maximum sampling preserving the stability as the waiting time. We extend this idea to the $L_2$-gain and ISS analysis of perturbed networked control systems with network-induced delays. By examples we demonstrate that the switching approach to event-triggered control can essentially reduce the amount of measurements to be sent through a communication network compared to the existing methods.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have