Abstract

This article proposes an event-triggered control framework to satisfy the tracking formation performance for a group of uncertain non-linear n-link robotic manipulators. The robotic manipulators are configured as a multi-agent system and they communicate over a directed graph (digraph). Furthermore, the non-linear robotic manipulator-multi-agent systems are subject to stochastic environmental loads. By introducing extra virtual controllers in the final step of the backstepping design, a total number of n event-triggering mechanisms are introduced independently for each link of all the robotic manipulator agents to update the control inputs in a fully distributed manner. More precisely, the actuator of each link of a particular agent is capable of being updated independent of other link actuator updates. A rigorous proof of the convergence of all the closed-loop signals in probability is then given and the Zeno phenomenon is excluded for the control event-triggered architectures. The simulation experiments finally quantify the effectiveness of proposed approach in terms of reducing the number of control updates and handling the stochastic environmental loads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call