Abstract
The problem of event-triggered fixed-time adaptive neural dynamic surface control (DSC) for stochastic non-triangular structure nonlinear systems is discussed in this article. Combined with the fixed-time stability theory, DSC technique and event-triggered control (ETC) technique, a novel event-triggered fixed-time adaptive controller is designed, under which both the closed-loop stability and the tracking performance can be guaranteed simultaneously in a fixed time. At the same time, the problems of “explosion of complexity” and “singularity” under the traditional backstepping design framework are avoided. Moreover, the design of event-triggered control mechanism can save the network resources effectively. In addition, the unknown nonlinear functions are approximated by some radial basis function neural networks (RBFNNs), and the filtering errors are compensated by the novel error compensating signals. Rigorous theoretical derivation and two simulations are included to illustrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.