Abstract

An event-triggered control technique has been developed recently. This technique explicitly reduced the signal transmission by introducing a flexible design of threshold inequalities. It was later extended to event-triggered model-predictive control for power converter systems. In this letter, by incorporating this control technique into an extended state-observer-based finite-control-set model-predictive control framework, we have developed a new model-predictive control architecture for power converter systems with parametric uncertainties. Meanwhile, a novel cost function with respect to the angle minimization term is embedded into this proposal. The novelty of our development lies not only in integrating the event-triggered mechanism with the suggested finite-control-set model-predictive control architecture for facilitating the alleviation of performance deterioration caused by parameter variations and model uncertainties, but also in a multiobjective optimization design that allows the switching frequency in a low value. Finally, extensive simulative and experimental investigations for a modular multilevel converter confirm the interest and the viability of the proposed design methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.