Abstract
This article investigates the event-triggered distributed average tracking (ETDAT) control problems for the Lipschitz-type nonlinear multiagent systems with bounded time-varying reference signals. By using the state-dependent gain design approach and event-triggered mechanism, two types of ETDAT algorithms called: 1) static and 2) adaptive-gain ETDAT algorithms are developed. It is the first time to introduce the event-triggered strategy into DAT control algorithms and investigate the ETDAT problem for multiagent systems with Lipschitz nonlinearities, which is more practical in real physical systems and can better meet the needs of practical engineering applications. Besides, the adaptive-gain ETDAT algorithms do not need any global information of the network topology and are fully distributed. Finally, a simulation example of the Watts-Strogatz small-world network is presented to illustrate the effectiveness of the adaptive-gain ETDAT algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.