Abstract

This paper proposes an event-based near-optimal control algorithm for nonaffine discrete-time systems with constrained inputs. The method is derived from the dual heuristic dynamic programming (DHP) technique. The challenge caused by saturating actuators is overcome by using a nonquadratic performance index. Then, the event-based control technique is used to decrease the amount of computation. Meanwhile, the stability analysis is provided. It illustrates that the proposed event-based method can asymptotically stabilize the nonaffine systems by using the Lyapunov method. Furthermore, the stability conditions and the design process of the event-based controller are established. The event-based DHP algorithm is implemented by constructing three neural networks, namely, the model network, the critic network, and the action network. Finally, simulation studies are conducted to demonstrate the applicability and the performance of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.