Abstract

Flexible and context-dependent behaviors require animals, including humans, to identify their current contextual state for proper rules to apply, especially when information that defines these states is partially observable. Depending on behavioral needs, contextual states usually persist for prolonged periods and across other events, including sensory stimuli, actions, and rewards, highlighting prominent challenges of holding a reliable state representation. The orbitofrontal cortex (OFC) is crucial in behaviors requiring the identification of the current context (e.g., reversal learning); however, how single units in the OFC accomplish this function has not been assessed. Do they maintain such information persistently, in separate populations from those responding phasically to events within a task, or is contextual information dynamic and embedded in these phasic responses? Here, we investigated this question by recording single units from OFC in rats performing a task that required them to identify the current contextual state related to estimated proximity to future reward with distracting olfactory cues. We found that while some OFC neurons encode contextual states, most change their selectivity upon the transition of task events. Nevertheless, despite dynamic activities in single neurons, the neural populations maintain persistent representations regarding current contextual states within particular neural subspaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.