Abstract

Various empirical data suggest that individuals with Panic Disorder (PD) fail to appropriately assign significance to sensory stimuli within the internal and external milieu, including those stimuli which are patently threat-neutral. The failure to appropriately discriminate ‘signal’ stimuli from among ‘noise’ signals [Gordon, E., Liddell, B.J., Brown, K.J., Bryant, R., Clark, C.R., Das, P., et al. 2007. Integrating objective gene–brain-behavior markers of psychiatric disorders. J. Integr. Neurosci. 6, 1–34.] results in disturbances of information processing and attentional deployment, which manifests across multiple levels of functioning (e.g., brain, behaviour, autonomic). The present event-related potential (ERP) study, therefore, investigated attentive information processing in PD, using a standard two-tone auditory oddball paradigm, to assess patients' response to infrequent ‘target’ tones (i.e., signals) and frequent ‘non-target’ tones (i.e., noise). Simultaneously-recorded autonomic data provided converging measures of the concomitants of disordered information processing. PD patients ( n = 50) showed increased N1 amplitude to frequent non-target tones and reduced P3 amplitude to infrequent targets, compared to matched controls ( n = 98). There were no between-group differences for N1 targets, N2 or P2. Patients additionally showed increased heart rate, fewer spontaneous skin conductance responses (trend) to significant stimuli, and reduced P3 latency compared to controls, although the latter result was accounted for by patients who frequently experienced depersonalization and/or derealisation during panic. Patients showed several disturbances of attentive information processing in a simple auditory discrimination task: Increased N1 to repeated stimuli suggests impaired stimulus filtering, whereas reduced P3 amplitude and latency represent the under-allocation of neural resources for infrequent, goal-relevant stimuli, and their increased speed of processing, respectively. These disturbances likely contribute to patients' aversive outcomes in stimulus-rich environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call