Abstract

The evoked spike discharges of a neuron depend critically on the recent history of its electrical activity. A well-known example is the phenomenon of spike-frequency adaptation that is a commonly observed property of neurons. In this paper, using a leaky integrate-and-fire model that includes an adaptation current, we propose an event-driven strategy to simulate integrate-and-fire models with spike-frequency adaptation. Such approach is more precise than traditional clock-driven numerical integration approach because the timing of spikes is treated exactly. In experiments, using event-driven and clock-driven strategies we simulated the adaptation time course of single neuron and the random network with spike-timing dependent plasticity, the results indicate that (1) the temporal precision of spiking events impacts on neuronal dynamics of single as well as network in the different simulation strategies and (2) the simulation time scales linearly with the total number of spiking events in the event-driven simulation strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.