Abstract

The unfolding of detector effects is a key aspect of comparing experimental data with theoretical predictions. In recent years, different Machine-Learning methods have been developed to provide novel features, e.g. high dimensionality or a probabilistic single-event unfolding based on generative neural networks. Traditionally, many analyses unfold detector effects using transfer-matrix-based algorithms, which are well established in low-dimensional unfolding. They yield an unfolded distribution of the total spectrum, together with its covariance matrix. This paper proposes a method to obtain probabilistic single-event unfolded distributions, together with their uncertainties and correlations, for the transfer-matrix-based unfolding. The algorithm is first validated on a toy model and then applied to pseudo-data for the pp→Zγγ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$pp\\rightarrow Z\\gamma \\gamma $$\\end{document} process. In both examples the performance is compared to the Machine-Learning-based single-event unfolding using an iterative approach with conditional invertible neural networks (IcINN).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.