Abstract
This paper introduces a new methodology to compute dense visual flow using the precise timings of spikes from an asynchronous event-based retina. Biological retinas, and their artificial counterparts, are totally asynchronous and data-driven and rely on a paradigm of light acquisition radically different from most of the currently used frame-grabber technologies. This paper introduces a framework to estimate visual flow from the local properties of events' spatiotemporal space. We will show that precise visual flow orientation and amplitude can be estimated using a local differential approach on the surface defined by coactive events. Experimental results are presented; they show the method adequacy with high data sparseness and temporal resolution of event-based acquisition that allows the computation of motion flow with microsecond accuracy and at very low computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.