Abstract
Inspired by biological retina, dynamical vision sensor transmits events of instantaneous changes of pixel intensity, giving it a series of advantages over traditional frame-based camera, such as high dynamical range, high temporal resolution and low power consumption. However, extracting information from highly asynchronous event data is a challenging task. Inspired by continuous dynamics of biological neuron models, we propose a novel encoding method for sparse events-continuous time convolution (CTC)-which learns to model the spatial feature of the data with intrinsic dynamics. Adopting channel-wise parameterization, temporal dynamics of the model is synchronized on the same feature map and diverges across different ones, enabling it to embed data in a variety of temporal scales. Abstracted from CTC, we further develop discrete time convolution (DTC) which accelerates the process with lower computational cost. We apply these methods to event-based multi- view stereo matching where they surpass state-of-the-art methods on benchmark criteria of the MVSEC dataset. Spatially sparse event data often leads to inaccurate estimation of edges and local contours. To address this problem, we propose a dual-path architecture in which the feature map is complemented by underlying edge information from original events extracted with spatially-adaptive denormal-ization. We demonstrate the superiority of our model in terms of speed (up to 110 FPS), accuracy and robustness, showing a great potential for real-time fast depth estimation. Finally, we perform experiments on the recent DSEC dataset to demonstrate the general usage of our model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.