Abstract

This paper proposes an event-based adaptive tracking control scheme for the n-link robotic systems in the presence of unknown backlash-like hysteresis (BLH) and deferred position constraints. By combining a transformation error with an asymmetric Lyapunov function, the devised control tactic achieves that the position constraints of robotic systems are not violated after user pre-specified time. In contrast to the results of robotic systems with position constraints, this paper removes a common assumption condition generated by the conventional barrier Lyapunov function method. Then, the adverse effect of unknown BLH can be offset by the Nussbaum function. Meanwhile, an event-triggered mechanism is designed to economize on the network bandwidth resources. Finally, based on the Lyapunov theory, an event-based adaptive tracking control tactic is proposed to ensure that all the signals of robotic systems are bounded under unknown BLH and deferred position constraints. Some simulation results proof that the devised control scheme is valid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call