Abstract
This article presents an event-triggered adaptive neural impedance control (ETANIC) scheme for robotic systems, where the combination of impedance control (IC) and event-triggered mechanism can significantly reduce the computational burden and the communication cost under the premise of ensuring the stability and tracking performances of the robotic systems. The IC is used to achieve the compliant behavior of the robotic systems in response to the environment. The uncertainties of the robotic systems are estimated by the radial basis function neural network (RBFNN), and the update laws for RBFNN are derived from the designed Lyapunov function. The stability of the whole closed-loop control system is analyzed by the Lyapunov theory, and the event-triggered conditions are designed to avoid the Zeno behavior. The numerical simulation and experimental tests demonstrate that the proposed ETANIC scheme can achieve better efficiency for controlling the robotic systems to perform the interaction tasks with the environment in comparison to the adaptive neural IC (ANIC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.