Abstract

Presented here is the second of a two-part investigation, designed to systematically identify and investigate the parameters affecting the evaporation from and boiling within, thin capillary wicking structures with a range of volumetric porosities and mesh sizes. The experimental studies were investigated under steady-state conditions at atmospheric pressure. Part I of the investigation described the wicking fabrication process and experimental test facility, and focused on the effects of the capillary wick thickness (ASME J. Heat Transfer., 128, pp. 1312–1319). In Part II, we examine the effects of variations in the volumetric porosity and the mesh size. The experimental results presented here indicate that the critical heat flux (CHF) was strongly dependent on both the mesh size and the volumetric porosity; while the evaporation/boiling heat transfer coefficient was significantly affected by mesh size, but not strongly dependent on the volumetric porosity. The experimental results further illustrate that the menisci at the CHF are located in the corners, formed by the wire and the heated wall and between the wires in both the vertical and horizontal directions. The minimum value of these three menisci determined the maximum capillary pressure generated through the capillary wick. The experimental results and observations are systematically presented and analyzed, and the local bubble and liquid vapor interface dynamics are examined theoretically. Based on the relative relationship between the heat flux and superheat, classic nucleate boiling theory, and the visual observations of the phase-change phenomena, as well as by combining the results obtained here with those obtained in Part I of the investigation, the evaporation/boiling heat transfer regimes in these capillary wicking structures are identified and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.