Abstract

Evaporation of sessile drops on micro-patterned surfaces is investigated over a range of heterogeneity length scales and solid area fractions. The surface topology is generated by a uniform arrangement of square pillars or square holes. The evaporation process is captured using high resolution imaging techniques and later post-processed for such information as contact angle, contact circle diameter and drop volume. It is observed that two distinct phases of evaporation existed for all substrate characteristics: pinned triple line (TL) phase and moving TL phase. In both phases, the process follows a linear decrease of surface area. The dimensionless evaporation rate constant is found to be higher during the moving TL phase in comparison with the pinned TL phase. In addition, it is found that the triple line topology has no effect on the evaporation rate constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.