Abstract

The effect of wood flour and coupling agent content on the hygroscopic thickness swelling rate of polypropylene composites was investigated in this study. To meet this objective, the wood flour was compounded with polypropylene and coupling agent in an internal mixer; then the samples were fabricated by injection molding. The concentration was varied from 40 to 60% for wood flour and from 0 to 4% for coupling agent. A swelling model developed by Shi and Gardner (2006) was used to study the thickness swelling process of polypropylene/wood flour composites, from which the parameter KSR can be used to quantify the swelling rate. The results indicated that the swelling model provided a good prediction of the hygroscopic thickness swelling process of polypropylene-wood flour composites immersed in water. The minimum thickness swelling values were observed in composites made of 40% wood flour and 4% of PP-g-MA. Thickness swelling of the composite increased with immersion time, reaching a certain value at saturation point, after which the composites water content remained constant. Also, a good linear relationship was fit between KSR and coupling agent contents. When the coupling agent content increased, KSR linearly decreased. The maximum tensile modulus was achieved with 60% wood flour and 4% of PP-g-MA. The SEM revealed a positive effect of coupling agent on interfacial bonding between sawdust flour and polymer matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call